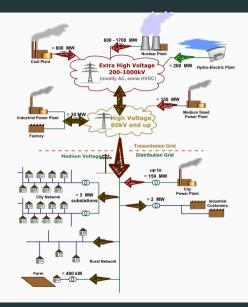
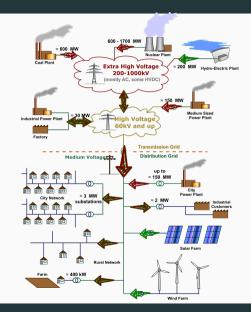
Decentralised control of active distribution grids using optimisation and machine learning techniques

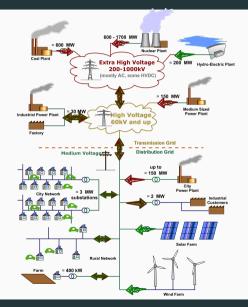
Petros Aristidou


School of Electronic and Electrical Engineering University of Leeds, UK

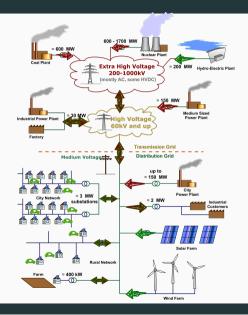
(joint work with Stavros Karagiannopoulos and Gabriela Hug, ETH Zurich)


Motivation

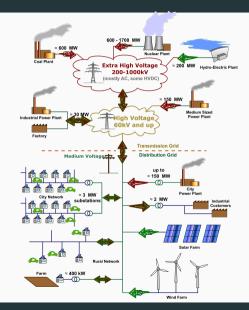
New developments in distribution grids


New developments in distribution grids

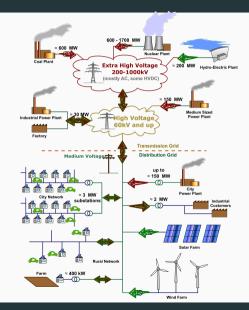
• Introduction of large distributed generators (renewable energy sources, etc.)

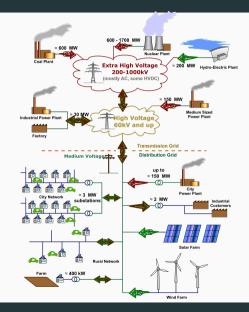

New developments in distribution grids

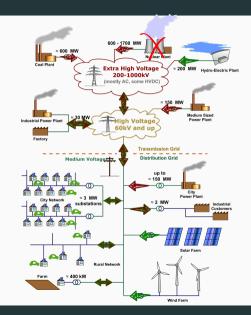
- Introduction of large distributed generators (renewable energy sources, etc.)
- Introduction of small distributed generators and energy storage systems
- Electrification of transportation (plug-in hybrid, battery electric, etc.)

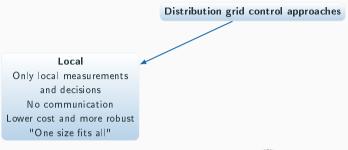


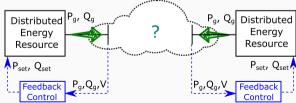
New developments in distribution grids

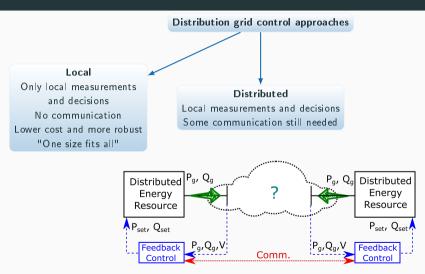

- Introduction of large distributed generators (renewable energy sources, etc.)
- Introduction of small distributed generators and energy storage systems
- Electrification of transportation (plug-in hybrid, battery electric, etc.)
- Demand response schemes (reaction to price signals, emergency load reduction, peak shaving, etc.)

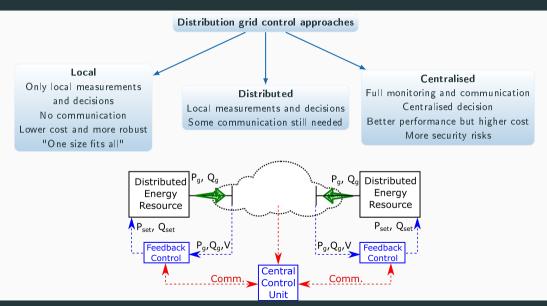

• Operation of the distribution grids close or above the physical limits and hosting capacity. Distribution grids were not designed to host generation.

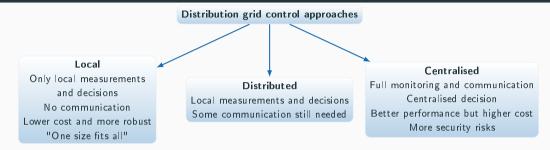

- Operation of the distribution grids close or above the physical limits and hosting capacity. Distribution grids were not designed to host generation.
- **Bi-directional flows.** Most of system protections and operation practices were not designed for this.

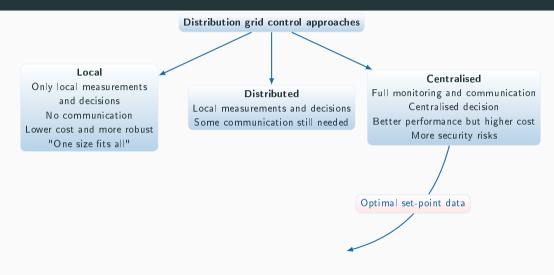

- Operation of the distribution grids close or above the physical limits and hosting capacity. Distribution grids were not designed to host generation.
- **Bi-directional flows.** Most of system protections and operation practices were not designed for this.
- Increased uncertainty. Intermittent generation, new consumption profiles and patterns, unknown consumer response.

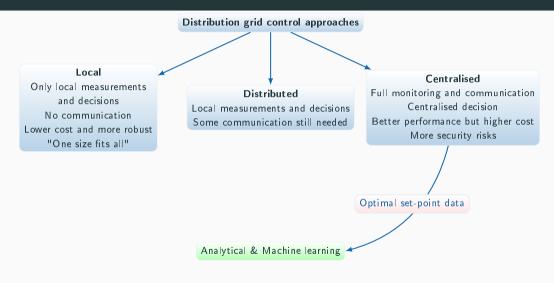


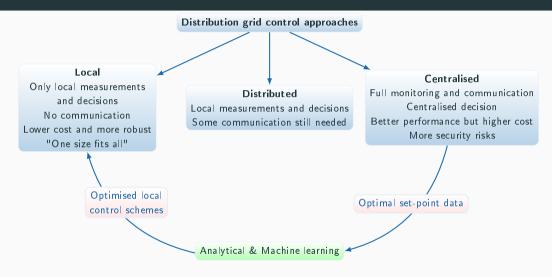

- Operation of the distribution grids close or above the physical limits and hosting capacity. Distribution grids were not designed to host generation.
- **Bi-directional flows.** Most of system protections and operation practices were not designed for this.
- Increased uncertainty. Intermittent generation, new consumption profiles and patterns, unknown consumer response.
- Decommission of conventional units. Loss of traditional "dispatchable" generation and control.

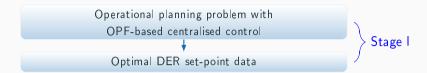


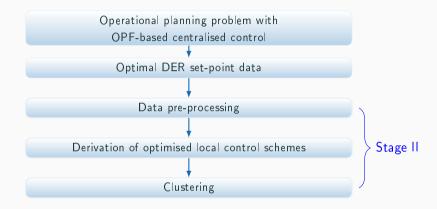

Distribution grid control approaches











Optimised local control

Operational planning problem with OPF-based centralised control

> Stage I

Stage III

Multi-period OPF problem formulation

$$\min_{\boldsymbol{u}} \sum_{t} (c_{op}^{T} \boldsymbol{u} + c_{el}^{T} losses) \Delta t$$

u:

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)

Multi-period OPF problem formulation

$$\min_{\boldsymbol{u}} \sum_{t} (c_{op}^{T} \boldsymbol{u} + c_{el}^{T} losses) \Delta t$$

Subject to:

- AC power-flow constraints
- Voltage limits
- Thermal loading limits
- DER limits
- Balancing constraints
- Controllable load constraints
- BESS dynamics

u:

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)

Multi-period OPF problem formulation

$$\min_{\boldsymbol{u}} \sum_{t} (c_{op}^{T} \boldsymbol{u} + c_{el}^{T} losses) \Delta t$$

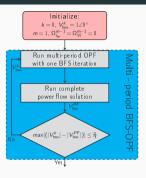
Subject to:

- AC power-flow constraints
- Voltage limits
- Thermal loading limits
- DER limits
- Balancing constraints
- Controllable load constraints
- BESS dynamics

u:

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)

AC power-flow constraints


• Non-convex and non-linear

AC power-flow constraints

- Non-convex and non-linear
 - Linear approximations of the AC power flows, heuristics, convex relaxations (Capitanescu & Bilibin 2016, Sankur et al. 2016, Bolognani & Dörfler 2015, Dall' Anese et al. 2015, Molzaln & Hiskens 2015, Lavaei & Low 2012, Paudyaly et al. 2011)
 - Backward/Forward Sweep (BFS) power flow (Fortenbacher et al. 2016)
 - ► Iterative procedure
 - Exploit the radial grid structure
 - ► Weakly meshed treatment

AC power-flow constraints

- Non-convex and non-linear
 - Linear approximations of the AC power flows, heuristics, convex relaxations (Capitanescu & Bilibin 2016, Sankur et al. 2016, Bolognani & Dörfler 2015, Dall' Anese et al. 2015, Molzaln & Hiskens 2015, Lavaei & Low 2012, Paudyaly et al. 2011)
 - Backward/Forward Sweep (BFS) power flow (Fortenbacher et al. 2016)
 - ► Iterative procedure
 - Exploit the radial grid structure
 - ► Weakly meshed treatment
- Use a single BFS iteration for the OPF problem

Tackling Uncertainty

• Branch current flows and voltages are functions of the power injections and are hence influenced by **renewable generator & load power uncertainty**

Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by renewable generator & load power uncertainty
- ► Formulation of Chance Constraints

$$\begin{split} & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \leq V_{\text{max}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \geq V_{\text{min}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|I_{\text{br,i,t}}| \leq I_{\text{i,max}}\right\} \geq 1 - \varepsilon \end{split}$$

Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by renewable generator & load power uncertainty
- ► Formulation of Chance Constraints

$$\begin{split} & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \leq V_{\text{max}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \geq V_{\text{min}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|I_{\text{br,i,t}}| \leq I_{\text{i,max}}\right\} \geq 1 - \varepsilon \end{split}$$

Reformulate into deterministic constraints through "tightenings"

$$\begin{split} V_{\min} + \Omega_{V \; j,t}^{lower} & \leq |V_{bus,j,t}^k| \leq V_{\max} - \Omega_{V \; j,t}^{upper} \\ & |I_{br,i,t}^k| \leq I_{i,\max} - \Omega_{I_{br,i}} \end{split}$$

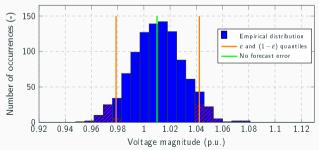
Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by renewable generator & load power uncertainty
- ► Formulation of Chance Constraints

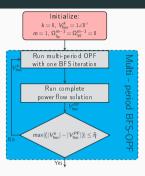
$$\begin{split} & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \leq V_{\text{max}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|V_{\text{bus,j,t}}| \geq V_{\text{min}}\right\} \geq 1 - \varepsilon \\ & \mathbb{P}\left\{|I_{\text{br,i,t}}| \leq I_{\text{i,max}}\right\} \geq 1 - \varepsilon \end{split}$$

► Reformulate into deterministic constraints through "tightenings"

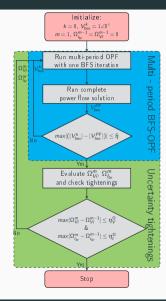
$$\begin{split} V_{\min} + \Omega_{V \; j,t}^{lower} & \leq |V_{bus,j,t}^k| \leq V_{\max} - \Omega_{V \; j,t}^{upper} \\ & |I_{br,i,t}^k| \leq I_{i,\max} - \Omega_{I_{br,i}} \end{split}$$



Uncertainty margins evaluation


 \bullet Analytical approach \to Need to know the probability distribution

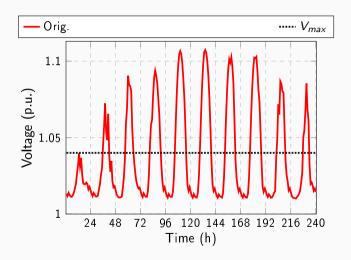
Uncertainty margins evaluation

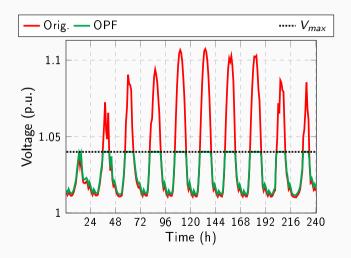

- ullet Analytical approach o Need to know the probability distribution
- Monte Carlo simulation using historical data from forecast errors
 - No assumptions about the uncertainty distribution
- Quantile ε calculation

Operational planning problem with centralised control

Operational planning problem with centralised control

Test system




Control actions

- Active Power Curtailment (APC)
- Reactive Power Control (RPC)
- Battery Energy Storage System (BESS)
- Controllable load (CL)

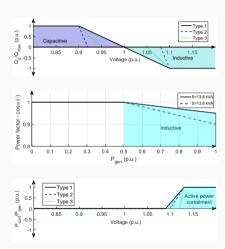

Network description

- Based on European CIGRE LV grid
- Normalized profiles
 - PV & forecasts: Real data from Zurich
 - Load: Typical profiles based on CIGRE
- Summer day simulations
 - High solar radiation
- Acceptable limits:
 - Voltage: \pm 4% p.u.
 - Current: up to 1 p.u.



Methodology overview

Methodology overview



Existing local control schemes

• Usually all DERs of same type and similar size have the same curve

Existing local control schemes

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: Q = f(V), $cos \phi = f(P)$, $P_{curt} = f(V)$

Existing local control schemes

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: Q = f(V), $cos \phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes

 Customised local control scheme for each unit based on data from the previous stage

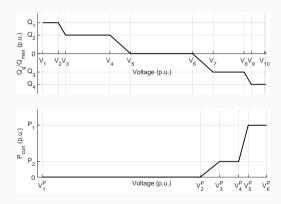
Existing local control schemes

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: Q = f(V), $cos\phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes

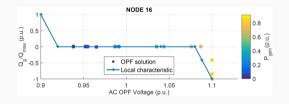
- Customised local control scheme for each unit based on data from the previous stage
- Use predictive modeling techniques to derive controllers from data
 - Piece-wise (segmented) linear fitting
 - Support Vector Regression (SVR)

Existing local control schemes

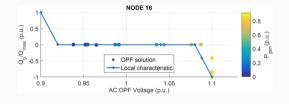

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: Q = f(V), $cos \phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes

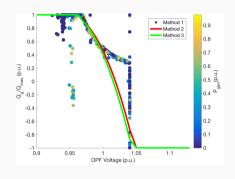
- Customised local control scheme for each unit based on data from the previous stage
- Use predictive modeling techniques to derive controllers from data
 - Piece-wise (segmented) linear fitting
 - Support Vector Regression (SVR)


Piece-wise (segmented) linear fitting

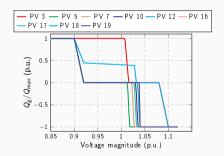
- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints


Piece-wise (segmented) linear fitting

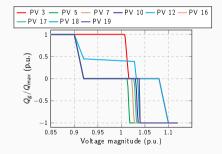
- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints


Piece-wise (segmented) linear fitting

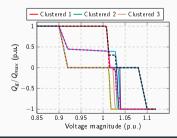
- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints
 - sensitivity to ouliers
 - prone to overfitting


Support Vector Regression

- Start from OPF-generated set-points (training data)
- Pre-process data (e.g., PV data during night)
- Non-linear SVR
 - Implicit mapping via kernels (Linear, Polynomial, Gaussian)
 - 5-fold cross-validation
 - Impose monotonicity and slope constraints


Unique characteristic curve per DER

- Implementation challenges
 - Need to program a different curve for each agent
 - Large number of inverter-based DERs


Unique characteristic curve per DER

- Implementation challenges
 - Need to program a different curve for each agent
 - Large number of inverter-based DERs

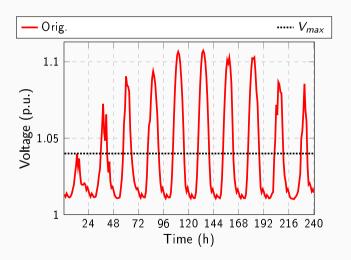
Clustering of the curves

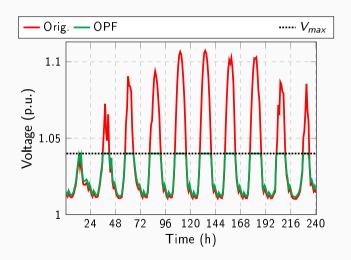
- For each voltage value, use k-means algorithm to the n individual curves (use the centroids of the n_{cl} clusters to form the final clustered curves)
- Assign DERs to clustered curves based on "distance"

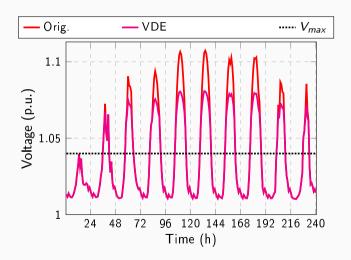
Methodology overview

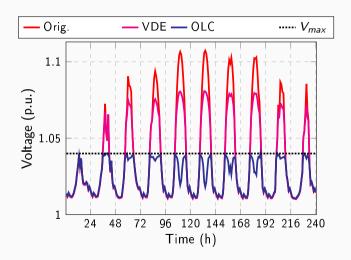
Methodology overview

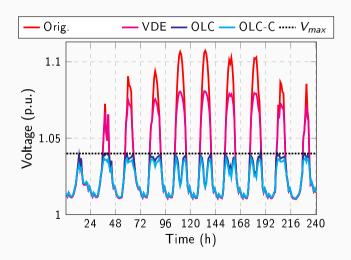
Test system




Control actions


- Active Power Curtailment (APC)
- Reactive Power Control (RPC)
- Battery Energy Storage System (BESS)
- Controllable load (CL)


Network description


- Based on European CIGRE LV grid
- Normalized profiles
 - PV & forecasts: Real data from Zurich
 - Load: Typical profiles based on CIGRE
- Summer day simulations
 - High solar radiation
- Acceptable limits:
 - Voltage: \pm 4% p.u.
 - Current: up to 1 p.u.

- Most of the new Smart Grid-driven developments are located in distribution grids
- Lack monitoring, communication, and control infrastructure

- Most of the new Smart Grid-driven developments are located in distribution grids
- Lack monitoring, communication, and control infrastructure
- Centralised controllers have great performance but high cost and robustness concerns
- Local controllers are robust and low cost but cannot cope with modern challenges

- Most of the new Smart Grid-driven developments are located in distribution grids
- Lack monitoring, communication, and control infrastructure
- Centralised controllers have great performance but high cost and robustness concerns
- Local controllers are robust and low cost but cannot cope with modern challenges

Data-driven optimised local controllers can bridge the gap

- Most of the new Smart Grid-driven developments are located in distribution grids
- Lack monitoring, communication, and control infrastructure
- Centralised controllers have great performance but high cost and robustness concerns
- Local controllers are robust and low cost but cannot cope with modern challenges

Data-driven optimised local controllers can bridge the gap

Future steps

- Investigate different ML techniques and extend to multiple local "features"
- Experimental validation (EMPA, Zurich)

