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New challenges

¢ Operation of the distribution grids close or
above the physical limits and hosting
capacity. Distribution grids were not designed
to host generation.
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Operational planning problem with centralised control

Multi-period OPF problem formulation
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e Active power curtailment (APC)

® Reactive power control (RPC)

® Battery Energy Storage Systems (BESS)
Controllable loads (CLs)
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AC power-flow constraints

® Non-convex and non-linear
— Linear approximations of the AC power flows, heuristics, convex relaxations (Capitanescu &
Bilibin 2016, Sankur et al. 2016, Bolognani & Dorfler 2015, Dall’ Anese et al. 2015, Molzaln

& Hiskens 2015, Lavaei & Low 2012, Paudyaly et al. 2011)
— Backward/Forward Sweep (BFS) power flow (Fortenbacher et al. 2016)
» lterative procedure
» Exploit the radial grid structure
> Weakly meshed treatment

® Use a single BFS iteration for the OPF problem



Operational planning problem with centralised control

Initialize:
k=0, VK =1/0°
m=1,Q7 =Qp =0

Run multi-period OPF
with one BFS iteration
Run complete
power flow solution

max| (V| = Vit DI < 7

Karagiannopoulos et al., "Operational Planning of Active Distribution Grids under Uncertainty", Proc. of 2017 IREP Conf.
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Operational planning problem with centralised control

Uncertainty margins evaluation

e Analytical approach — Need to know the probability distribution

e Monte Carlo simulation using historical data from forecast errors

— No assumptions about the uncertainty distribution

® Quantile € calculation
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Operational planning problem with centralised control

Initialize:
k=0, Vi, =120°
m=1,Qr 1 =qpt =0

Run multi-period OPF
with one BFS iteration

Run complete
power flow solution

max|(|Vigs| = Vi DI < 7

Evaluate Qf}, Q7
o
and check tightenings

max|S, — Q5 < nf

0
max|Q — Q-1 <nft




Test system

Network description
® Based on European CIGRE LV grid

® Normalized profiles

— PV & forecasts: Real data from Zurich
— Load: Typical profiles based on CIGRE

® Summer day simulations

Control actions
® Active Power Curtailment (APC)
® Reactive Power Control (RPC)
® Battery Energy Storage System (BESS)

— High solar radiation
® Acceptable limits:

— Voltage: £+ 4% p.u.
Controllable load (CL) — Current: up to 1 p.u.
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Optimised local control schemes

Piece-wise (segmented) linear fitting

e Simple and efficient (R, sklearn,
MATLAB, etc.)

e Challenges
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Optimised local control schemes

Piece-wise (segmented) linear fitting

e Simple and efficient (R, sklearn,
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Optimised local control schemes

Support Vector Regression

e Start from OPF-generated set-points
(training data)
® Pre-process data (e.g., PV data during
night)
® Non-linear SVR
— Implicit mapping via kernels (Linear,
Polynomial, Gaussian)
— 5-fold cross-validation

— Impose monotonicity and slope
constraints

1 1.05
OPF Voltage (p.u.)

Bellizio et al., "O ized local control schemes for active dis tion grids using machine learning techniques", Proc. of the 2018 IEEE PES GM



Optimised local control schemes

Unique characteristic curve per DER
® Implementation challenges

— Need to program a different curve for
each agent
— Large number of inverter-based DERs
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Clustering of the curves

® For each voltage value, use k-means
algorithm to the n individual curves (use
the centroids of the n. clusters to form
the final clustered curves)

® Assign DERs to clustered curves based
on “distance”
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Test system

Network description
® Based on European CIGRE LV grid

® Normalized profiles

— PV & forecasts: Real data from Zurich
— Load: Typical profiles based on CIGRE

® Summer day simulations

Control actions

Active Power Curtailment (APC) High solar radiati
— High solar radiation

® Reactive Power Control (RPC) o Acceptable limits:

Battery Energy Storage System (BESS) ~ Voltage: + 4% p.u.

Controllable load (CL) — Current: up to 1 p.u.




Some results

’ —Orig. e Vimax ‘

VUUUUU

1 1 1 1 1 1 1
24 48 72 96 120 144 168 192 216 240
Time (h)




Some results

VULV

1 1 1 1 1 1 1
24 48 72 96 120 144 168 192 216 240
Time (h)




Some results

’— Orig.

1.1

"\meJU

24 48 72 96 120 144 168 192 216 240
Time (h)




Some results

’ — Orig. —VDE—OLC e Vimax \

TITIRR

VA

1 1 1 1 1 1
24 48 72 96 120 144 168 192 216 240
Time (h)




Some results

| — Orig. — VDE — OLC — OLC-C e V,
[ [ [ [ [ [ [

RNV

\ |

=/

1 1 1 1 1 1
24 48 72 96 120 144 168 192 216 240
Time (h)



Concluding remarks




Concluding remarks

® Most of the new Smart Grid-driven developments are located in distribution grids

® Lack monitoring, communication, and control infrastructure



Concluding remarks

Most of the new Smart Grid-driven developments are located in distribution grids

Lack monitoring, communication, and control infrastructure

Centralised controllers have great performance but high cost and robustness concerns

® Local controllers are robust and low cost but cannot cope with modern challenges



Concluding remarks

Most of the new Smart Grid-driven developments are located in distribution grids

Lack monitoring, communication, and control infrastructure

Centralised controllers have great performance but high cost and robustness concerns

® Local controllers are robust and low cost but cannot cope with modern challenges

Data-driven optimised local controllers can bridge the gap



Concluding remarks

Most of the new Smart Grid-driven developments are located in distribution grids

Lack monitoring, communication, and control infrastructure

Centralised controllers have great performance but high cost and robustness concerns

® Local controllers are robust and low cost but cannot cope with modern challenges
Data-driven optimised local controllers can bridge the gap

Future steps

® |nvestigate different ML techniques and extend to multiple local “features”

® Experimental validation (EMPA, Zurich)
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